
Sartoris: an experiment regarding
microkernel-based operating systems

Santiago Bazerque Nicolás de Galarreta
sbazerqu@dc.uba.ar nicodega@cvtci.com.ar

Departamento de Computación,
Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires.

Final exam, course “Organización de Computadoras II”
Director: Patricia Borensztejn, patricia@dc.uba.ar

Abstract: Sartoris is a minimal, portable microkernel. It provides direct
support for the creation and destruction of tasks and threads, and inter-task
communication mechanisms (message queues and shared memory). However,
it attempts to be as policy-neutral as possible, providing a high degree of
freedom to the operating system designer. In this article we discuss design
issues and implementation strategies for the x86 family of processors. Finally,
we describe a small Sartoris-based operating system, that was created to test
the microkernel.

Key words: microkernel, processor architecture, multi-server operating system.

1 Introduction

The idea behind a microkernel-based operating system is to reduce the size
and complexity of the kernel by implementing most of the operating system’s
functionality in the form of servers that run in user-mode. Initially, this idea
promised a dramatic increase in flexibility, safety and modularity.

1



In a monolithic kernel, the operating system’s functions are packed in
the kernel: scheduling, memory management, file systems, networking, de-
vice drivers, and everything else. Traditionally, the µ-kernel approach only
requires scheduling, inter-process communication and the implementation of
support for several address spaces to be implemented in the kernel. This
suffices to allow the implementation of the rest of the subsystems as servers.
The advantages of this approach may be summarized as follows:

1. Different application programming interfaces (APIs) or even OS per-
sonalities can coexist in one system.

2. The system becomes more flexible and extensible.

3. Server (and driver) malfunctions are isolated as normal application’s
are.

4. A smaller kernel is easier to maintain and in general less error-prone.

5. The trusted computing base is significantly reduced.

However, first-generation µ-kernels turned out to be rather inefficient
(compared to monolithic kernels), and they lacked real flexibility. Usually,
they had rather large system-call sets and were designed to preserve unix-
compatibility, but also allowing the construction of novel features. It was
a common belief at that time that the layer of abstraction presented by
µ-kernels was either too low or too high.

Recent second-generation µ-kernels address the flexibility and efficiency
problems that appeared in earlier ones (a survey of this process is presented in
[2]). QNX, L4 and the MIT’s Exokernel are examples of second-generation
microkernels. They were usually designed from scratch, and have smaller
system-call sets than their predecessors. Also, to improve the efficiency of
the system, they are usually highly dependent on the underlying hardware
architecture.

While Sartoris is similar in some aspects to the microkernels just de-
scribed (i.e. it makes heavy use of inter-process communication mechanisms,
uses the task-thread abstraction to present the processor resource to the rest
of the system, supports different program privilege levels and allows the exe-
cution of I/O operations outside the kernel), it provides a simpler abstraction
of the processor and memory resources than most of them. Firstly, Sartoris
performs no I/O at all1, except for the initial loading of the main system
servers. Secondly, since under Sartoris the scheduling is performed by one

1Therefore, device drivers are implemented as servers running in user mode.

2



or more scheduler threads (usually bound to the timer interrupt), all the
functions provided by the µ-kernel are non-blocking (blocking is performed
at a higher level, usually in the process-server). While these choices didn’t
yield a particularly small system call set2, the nature of the resulting kernel
is simple and elegant. Functionally, Sartoris behavior is somehow close to
the MIT’s Exokernel (further described in [4]), which also attempts to sepa-
rate protection and management issues, leaving the latter in the application
domain. Despite this initial coincidence, there are important differences:
Sartoris only provides direct support for handling CPUs and main memory
(upon request, it grants I/O privileges to programs, but without regarding
the semantics of those rights), while the Exokernel exposes all the hardware,
attempting to protect and isolate each application’s actions. Furthermore,
the Exokernel design includes software libraries that implement OS policies.
Sartoris intention is to be general in that aspect.

2 Motivation and problem description

As was stated in the introduction, microkernel-based operating systems have
many interesting features. However, there are some inherent difficulties that
must be addressed in their construction. Our experiment consisted in the
design of a minimal, architecture-neutral microkernel and it’s implementa-
tion for the x86 processor. We also implemented a few device drivers and
operating system servers that run on top of the microkernel, and a subset
of the C library. Using the library, programs can use an API similar to the
familiar unix API, with some restrictions due to the simple nature of the
servers that were implemented.

Our µ-kernel design goals can be summarized as follows:

The microkernel should present a simple yet effective abstraction of
the processor to the operating system. The services offered by the
microkernel should be clearly defined and easy to understand.

In order to obtain effective portability, a suitable interface that encap-
sulates the architecture-dependent sections of the kernel code has to be
defined.

Kernel services should be provided in a policy-independent way, when-
ever this is possible. The design of the operating system should not be
over-restricted by the underlying microkernel architecture.

2Sartoris has 22 system calls, quite numerous when compared, for example, with the
7-12 system calls used in different versions of the L4 µ-kernel.

3



The design of the microkernel should allow the efficient implementa-
tion of the most common operating system functions, considering the
inherent constraints that the microkernel architecture imposes to the
system.

The microkernel must provide the security primitives to allow the im-
plementation of a secure environment.

3 Solution outline

As a first step in the design of the microkernel, we tried to reduce the func-
tionality of the µ-kernel to a bare minimum, yet allowing a reasonable imple-
mentation of the necessary servers. We concluded that the necessary system
calls can be grouped as follows:

Task and thread management. These system calls cover the loading
and unloading of tasks into the system, and the creation, destruction
and running of threads. They also permit the binding of a hardware
interrupt to an interrupt-handling thread.

Memory management. These system calls handle the sharing of
memory between tasks. This subsystem should also provide an ab-
straction of the paging mechanism (this was considered in the design
of the microkernel, but has not been implemented yet).

Message passing. The kernel provides an asynchronous messaging
system, in the form of a set of ports assigned to each task. Each port
functions as a mailbox where fixed-sized messages from other tasks are
received. These system calls cover the creation, deletion and manage-
ment of ports.

These system calls provide a simple processor abstraction, and they were
sufficient for the implementation of all the basic servers. They are also
completely policy-independent (note that there isn’t even a simple sched-
uler within the microkernel: just the thread abstraction). Tasks, message
queues, shared memory objects and threads have permission data that al-
lows the operating system to restrict the way in which they interact with
user programs. The microkernel implements software protection rings that
may be used by the operating system to secure it’s architecture. Also, a clear
interface between the architecture-neutral, algorithmic section of the kernel
(where all the permissions, shared memory objects, message queues, etc. are

4



maintained) and the hardware-specific section is defined (a similar approach
is described in [3]).

4 Solution description

4.1 The system call set

A kernel might be defined as the set of functions that it implements. The
full system call set is declared in the file include/sartoris/syscall.h:

/* sartoris system calls */

#ifndef SYSCALL
#define SYSCALL

#include <sartoris/kernel.h>

/* multitasking */
int create task(int address, struct task *tsk, int *src, int init size);
int destroy task(int task num);

/* threading */
int create thread(int id, struct thread *thr);
int destroy thread(int id);
int run thread(int id);
int set thread run perm(int thread, int perm);
int set thread run mode(int priv, int mode);

/* interrupt handling */
int create int handler(int number, int thread, int nesting, int priority);
int destroy int handler(int number, int thread);
int ret from int(void);

/* message-passing */
int open port(int port, int mode);
int close port(int port);
int set port perm(int port, int task, int perm);
int set port mode(int port, int priv, int mode);
int send msg(int to address, int port, void *msg);
int get msg(int port, void *msg, int *id);
int get msg count(int port);

5



/* memory sharing */
int share mem(int target task, void *addr, int size, int perms);
int claim mem(int smo id);
int read mem(int smo id, int off, int size, void *dest);
int write mem(int smo id, int off, int size, void *src);
int pass mem(int smo id, int target task);

#endif

4.2 Tasks and threads

All the processing (even interrupt handling!) in a Sartoris based system is
performed in the context of a task, and a thread within that task. A task is
loaded into memory upon it’s creation, and remains in main memory until it
is terminated. No swapping of tasks is directly supported3.

A task is composed by a flat virtual address space and communication
mechanisms (ports and shared memory objects) and is identified by a num-
ber between zero and MAX TSK4, which is the parameter address passed to
the system call create task(int address, struct task *tsk, int *src, int init size),
where *src points to the beginning of the task image within the calling task’s
address space, and *tsk points to a structure of the type

struct task {
int mem adr;
int size;
int priv level;

};

where mem adr indicates the physical address where this task should be
placed in main memory5, size indicates the size (in processor words) of the
task being created, and priv level indicates it’s privilege level. This number
might be used by the operating system to restrict the ability to send mes-
sages to ports and to run specific threads using privilege levels. Zero is the
most privileged level, and levels zero and one are currently the only levels

3Of course, the operating system could easily implement such functionality.
4A constant defined by the implementation
5The organization of the tasks in physical memory is therefore under absolute control

of the operating system.

6



that can access the input/output space. Also, the system calls to create and
destroy tasks, threads and interrupt handlers are restricted to tasks running
in privilege level zero. The system call ret from int is restricted to levels zero
and one. Tasks are destroyed using the similar function destroy task, which
receives the address of the task being destroyed.

A thread is a path of execution within a given task. A task might
have zero or more threads. Threads are created using the system call cre-
ate thread(int id, struct thread *thr). The parameter id is an integer that
uniquely identifies each thread, and must not exceed MAX THR-1. The struc-
ture thread is defined as

struct thread {
int task num;
int invoke mode;
int invoke level;
int ep;
int stack;

};

where task num is the task that defines the context in which this thread
is to be created (which must already exist), ep is the thread’s entry point,
stack is the initial stack value, and invoke mode is one of the following:

PERM REQ: In this mode, it is necessary (additionally to the privilege
level constraints) to have specific authorization (obtained through the
function set thread run perm) to run this thread.

PRIV LEVEL ONLY: In this mode, the invoking thread must have a
privilege level numerically not greater than the invoke level of the target
thread. No per-thread specific permissions are required in this mode,
only the described privilege-level restriction is applied.

DISABLED: The thread is disabled, and it can’t be invoked by anyone.

The value of the field invoke level indicates the numerically higher privilege
level that can invoke this thread.

Threads are destroyed using the destroy thread system call, and may be
started (or resumed) by interrupt requests signaled to the processor, software
generated interrupts, exceptions, traps and the already mentioned run thread
system call.

As a non-restrictive policy, the run thread system call can be used by
threads running at every privilege level, but the mechanisms described above

7



restrict which threads might be invoked from a given thread-task pair. A
thread is able to modify it’s invoke mode using the set thread run mode sys-
tem call.

4.3 Messaging system

The kernel provides an asynchronous inter-task messaging system through
the send msg, get msg and get msg count system calls. The messages have
a fixed size defined by the implementation, and the kernel guarantees that
messages arrive in FIFO order, but each message queue has a maximum
capacity which is also implementation-defined. When a message is sent using
the function int send msg(int to address, int port, void *msg), the contents
of the message pointed by msg are copied to the queue corresponding to
port number port of task to address. The reception of messages is done in
an analogous fashion using the function int get msg(int port, void *msg, int
*id), which removes the fist message in the supplied port’s queue and copies
it’s contents to the address msg. The variable id is used to return the id
of the sender task. Both functions return 0 on success. The function int
get msg count(int port) returns the amount of messages in the queue of the
supplied port. Before a port can be used to receive messages, it must be
opened using the open port system call, setting it’s protection mode (it works
in an analogous fashion to thread’s protection modes) and the numerically
higher privilege level that can send messages to this port. When a port
is closed using the close port system call, the associated message queue is
flushed and the port becomes unavailable (attempts to send messages to a
closed port will fail).

4.4 Memory management

The microkernel must supply a mechanism to perform memory sharing.
Therefore, each task owns a set of Shared Memory Objects which allow other
tasks to access it’s address space in a controlled way. However, there is no
memory aliasing, and access is limited to reading from and writing to the
shared sections using system calls that copy memory contents from one task
address space to another.

The system call int share mem(int target task, void *addr, int size, int
perms) creates a SMO of size size words6 at offset addr of the current task

6The actual unit in which size is expressed is defined by the implementation.

8



address space, that can be accessed by the task7 target task. The parameter
perms indicates if access is granted for reading, writing, or both. The func-
tion returns an id number that identifies the SMO just created, or -1 in case
of failure. SMOs can be destroyed using the system call int claim mem(int
smo id) and the target task of an SMO can pass it over to another task using
the system call int pass mem(int smo id, int target task), which changes the
target task to the supplied parameter.

The system call int read mem(int smo id, int off, int size, void *dest) copies
the size words at offset off of the SMO identified by smo id to the address
dest. Conversely, the system call int write mem(int smo id, int off, int size,
void *src) copies size words from address src from the current task’s address
space to offset off of the SMO identified by smo id. Of course, in both cases
the current task must be the target task of the SMOs, and have the right
permission.

4.5 x86 implementation outline

This section is specific to the x86 processor family, described in [6], [7] and
[8].

Bootstrapping: In the PC architecture, bootstrapping begins after the
BIOS loads the first 512-byte sector of the boot drive to offset 0x7c00, and
executes it in real mode. The boot sector uses BIOS function 0x13 to load
the kernel image and the init task image to memory. Then it jumps to the
kernel initialization routines. In order to run the kernel, the boot sector
must also enable the 20’th address line in the bus, which is done through the
keyboard controller and change the processor executing mode to protected
mode. Temporary IDT and GDT tables are set up before the switch to pro-
tected mode.
Global Descriptor Table: The GDT contains the descriptors that are
shared among all the tasks in the system. Some descriptors, in particular
the LDT descriptors used to implement tasks and the TSS descriptors used
for multi-threading, must reside in the GDT. Some other descriptors that are
shared among all the tasks are also in the GDT. The variables MAX SCA,
MAX TSK and MAX THR are used to statically reserve entries in the GDT
for the maximum possible amount of system calls, tasks and threads. The
descriptor layout in the GDT is:

7What is meant here is that it can be accessed by any thread of the corresponding task.

9



descriptor group how many? details
system descriptors 4 dummy, kernel code,

kernel data, high memory area
syscalls MAX SCA call gates for the system calls
LDT descriptors MAX TSK descriptors for task’s

Local Descriptor Tables
TSS descriptors MAX THR descriptors for thread’s

Task State Segments

Interrupt Descriptor Table: The IDT contains the descriptors that define
the processor’s reaction to exceptions and external or software generated
interrupts. The first 32 entries are reserved for the processor’s exceptions,
while the rest may be used to handle external interrupts or operating system
services invoked through an int instruction.
Local Descriptor Tables: Each LDT must be contained in a special system
segment in the GDT. Every task has it’s own linear address defined by two
descriptors in it’s Local Descriptor Table: an execute-read type descriptor
for it’s code and a read-write descriptor for it’s data and stacks.

4.6 IA32 low-level functions implementation details

This section briefly describes the behavior of the IA32 implementation of the
functions defined in Sartoris’ low-level interface.

arch init cpu: (invoked from the bootsector)
PIC reprogramming. The init functions reprograms the programmable
interrupt controllers so that the interrupts from the master controller go to
the offsets 32-39 and interrupts from the slave controller go to offsets 40-47
of the IDT. The slave PIC is cascaded through the second interrupt request
line of the master. All the interrupts are disabled though the PICs interrupt
masks.
GDT set up. The dummy, kernel code, kernel data and high memory area
descriptors of the GDT are created. All the other descriptors are invalidated.
syscall hooking. All the task gates for the system calls are created in the
corresponding GDT positions.
IDT set up. The fist 32 entries of the IDT are filled with interrupt gates8

that point to routines that will dump the cpu registers and information about
the currently running task and thread and halt the machine. These handlers
should be replaced by the operating system exception handling threads, but

8An interrupt gate is very similar to a call gate, but the processor handles the interrupt
enable flag differently.

10



for operating system development and to show some diagnostic in case the
operating system dies very early in the boot process these default handlers
are useful. The rest of the IDT is full with invalid descriptors.
Init service execution. Now the cpu is ready to run the µ-kernel. Using
the create task and create thread system calls, the operating system init ser-
vice is created at the exact address to which it was fetched earlier by the
bootstrapping code, and executes using the run thread system call. This is
the last action the microkernel will take on it’s own initiative.

arch create task:
LDT set up. An execute-read segment and a read-write segment are cre-
ated in the task’s local descriptor table first and second descriptors, with the
privilege level corresponding to the task being created and base and limit
according to the corresponding syscall parameters.
create LDT descriptor. The GDT descriptor for this LDT is created with
the correct privilege level.

arch destroy task:
invalidate LDT descriptor. The task’s LDT descriptor is invalidated,
preventing any future access to or execution from the task’s address space.

arch create thread:
TSS set up. The Task State Segment holds the contents of all the general
purpose registers, the base and stack registers for all the privilege levels, the
segment selector registers, the eflags register, the LDT selector register, the
instruction pointer register, and a few more that are not used under Sartoris.
create TSS descriptor. Once the TSS is in place, a descriptor in the GDT
must be created through which the thread may be started and resumed.

arch run thread:
do task switch. A task switch to the target thread is initiated by performing
a far jump to offset zero of the thread’s TSS descriptor in the GDT. No
nesting of tasks is produced.

arch cli:
disable interrupts. The interrupt enable bit of the eflags register is saved
and then cleared. The function returns the original value.

arch sti:
enable interrupts. The previous value of the interrupt enable bit is exam-
ined and interrupts are re-enabled only if they weren’t disabled before the
call to the previous arch cli.

11



4.7 The test operating system

To test the µ-kernel, a small operating system was implemented. It is com-
posed by

An init server that is loaded by the µ-kernel at boot time. It loads
the rest of the servers and is destructed by the process server during
the first scheduling round.

A process server that controls the creation of tasks and performs
scheduling.

A ram-fs server that implements read-only memory filesystem.

A console server that acts as a driver for the keyboard and the VGA
adaptor, and implements virtual consoles.

A DMA server that administrates direct memory access channels.

A floppy disk driver server that uses the DMA server to provide
raw access to the floppy disk.

A filesystem server that implements a simple filesystem using the
floppy disk driver server.

The servers use the messaging and memory sharing functions of the µ-
kernel to communicate. The interrupt handlers were implemented as threads
using the interrupt-handling support built in the µ-kernel.

5 Conclusions

The µ-kernel provided a suitable environment for the implementation of a
simple operating system. Furthermore, building a modular and secure system
was very straightforward. While performance was not measured, clearly the
increasing amount of context switching and memory sharing that is required
by having several servers is a complex issue and solving it requires a careful
study of the interactions between the servers and the user programs. In [5],
Bershad argues that IPC overhead is, on one hand, improving as hardware
and microkenels evolve and on the other, small compared to the overhead
introduced by other factors. As a long-term issue, it would be interesting to
see the consequences of the incorporation of paging to Sartoris. While porting
the microkernel to other hardware architectures has not been attempted yet,

12



we recently started a port to an x86-like architecture simulated within a unix
process. The low-level interface was very successful, and it really simplified
the port. However, the simulated architecture is not very different in nature
to the original x86 architecture the µ-kernel was designed for. We believe
that the aforementioned minimization of the µ-kernel greatly enhanced the
extensibility of the system. We modified the test OS several times, adding,
removing and modifying servers without great effort. Essentially, every policy
was implemented outside the kernel and could be redesigned without risking
the introduction of kernel bugs.

References

[1] Abraham Silberschatz, Peter Baer Galvin: Operating system concepts,
Addison-Wesley Publishing Co., Reading, MA, USA, fourth edition,
1993.

[2] Jochen Liedtke: Towards Real µ-kernels, CACM, 39(9), to appear.

[3] See-Mon Tang, David K. Raila, Roy H. Campbell: A Case for Nano-
Kernels, Technical report, Department of Computer Science, University
of Illinois at Urbana-Champaign, 1995.

[4] Dawson R. Engler: The Exokernel Operating System Architecture, Ph.D.
Thesis, MIT, 1998.

[5] Brian N. Bershad: The Increasing Irrelevance of IPC Performance for
Microkernel-Based Operating Systems, 1992.

[6] Intel Corp.: Intel Architecture Software Developer’s Manual. Volume 1:
Basic Architecture, 1999.

[7] Intel Corp.: Intel Architecture Software Developer’s Manual. Volume 2:
Instruction Set Reference, 1999.

[8] Intel Corp.: Intel Architecture Software Developer’s Manual. Volume 3:
System Programming, 1999.

13


